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ABSTRACT: The bootstrap method is an extensive computational approach, based on 

Monte Carlo simulation, useful for understanding random samples and time series. It is a powerful 
tool, especially when only a small data set is used to predict the behaviour of systems or processes. 
This paper presents the results of an investigation on using bootstrap resampling (different types: 
uniform, importance based, block structured etc.) for time series appearing during software life 
cycle (mainly the software testing phase, and debugging), economics, and environment (air 
pollution generated by cement plants) in order to help the activity of staff working on risk 
management for software projects, risk management in finance, and those working on environment 
risk management. 

 
Z. INTRODUCTION 

 
Risk in the sense of the possibility of losses is an important chapter for many organizations, 

not only financial markets, but also for industry. One important principle belonging to the general 
scientific knowledge in the area of risk claims that “it is impossible to manage the risk without 
quantitative measurement and analysis of risk”, according to (Solojentsev, 2005).  

There are various aspects concerning risk management, depending on the field under 
consideration. As a consequence, different methodologies (models) were developed (Aven 2003, 
Solojentsev 2005, Kontio 1997, Higuera & Haimes 1996, Entrop et al.2007, Todinov 2006 etc.) 

 This paper addresses the usage of the bootstrap approach for analysing time series appearing 
when modelling some measurements during the evolution of processes. Bootstrap proved to be a 
valuable approach for a large class of applications according to (Efron & Tibshirani 1993, Albeanu 
et al. 2007), and the references mentioned related to time series. 

 The remainder of the paper is organized as follows. A short introduction to general 
bootstrap approach is given in the second section. Algorithmic aspects concerning bootstrapping 
time series and challenging problems related to the model selections are presented in the third 
section. The fourth section discusses on three case studies covering different fields of economical 
activities: cement plants pollution, inflation rate and software risk management. 

 The concluding section establishes the most important challenges to deal with when using 
bootstrapping time series. 

 
2. PROBLEM DEFINITION AND BACKGROUND INFORMATION 

 
2.1. Bootstrap methodology 

 
Bootstrap is a simple but powerful Monte-Carlo method to assess statistical accuracy or to 

estimate a distribution from sample’s statistics. The methods are suitable for any level of odellin 
being useful for fully parametric, semi-parametric, and completely nonparametric analysis. These 
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approaches are not only in use by statisticians, but also are applied anywhere statistics can be used: 
life sciences, business, social sciences, econometrics, reliability etc. For the aim of this paper we 
outline the basic bootstrap principle (see Efron 1979, Efron & Tibshirani 1986), and the application 
of bootstrap sampling for time series in order to help the activity of staff working on risk 
management. 

Let X be a random variable and F the cumulative distribution function of the variable X. The 
Bootstrap method, introduced by Efron (1979), is useful, at least, for the estimation of: a) the 
distribution function of a random variable R(X, F); b) a functional relation V(F), or c) the accuracy 
of a statistics s obtained from a sample (X1, X2, …, Xn) of size n from X (the accuracy describing the 
variability of s when independent estimations s(1), s(2), …, of the statistics s, are obtained by 
resampling). 

The bootstrap technique uses the sample (X1, X2, …, Xn) to obtain the sampling cumulative 
distribution function Fn(x) in order to replace the true cumulative distribution function F: Fn(x) = 
(1/n) cardinal {xi � x; 1 � i � n}. To repeatedly simulate bootstrap samples X* := (X1*, X2*, …, 
Xn*) from Fn , random number generators should be used according to the Monte-Carlo approaches. 
Then, for each bootstrap sample, it is recalculated: a) the distribution function of the random 
variable R(X*, Fn) ; b) the functional relation V(Fn) or V(Fn*) and c) the statistics s*( ). The 
accuracy of the statistics s can be derived under an appropriate statistical inference study on the 
sequence s*(). 

The bootstrap resampling can be realised in various ways. Uniform resampling and the 
importance resampling are the mostly used. As a common example of the usage of the uniform 
resampling, we refer to the bootstrap algorithm for estimating standard errors. However, when some 
observations are more important than others, the importance resampling can provide close to real 
conclusions. If resampling is based on importance resampling weights, then the bootstrap estimates 
are re-weighted as if uniform resampling is done. 

 
 

2.2.  Bootstrapping time series 
 
Time series play an important role in modelling, analysing and forecasting the behaviour of 

systems (Cochrane 2005, Hamilton 1994, Burtschy 1997, Madsen 2007). There are numerous 
aspects concerning time series. In the following will be described only those models and algorithms 
required by our case studies. 

Let {xt; t = 1, 2, …, T} be a time series and L be the lag operator: Lxt = xt-1; t > 1. The 
ARMA model having order (p, q) is given by: 

ϕ(L) xt = θ(L) ut, (1) 
where ϕ(L)xt  = (a0L0 + a1L1 + … + apLp)xt = a0xt + a1xt-1 + … + apxt-p, p ≥ 0, ap ≠ 0, θ(L)ut 

 = (b0L0 + b1L1 + … + bqLq)ut = b0ut + b1ut-1 + … + bput-q, q ≥ 0, bq ≠ 0, and {ut} is an 
uncorrelated process with zero mean and finite variance. 

 The ARMA bootstrap algorithm proceeds as follows: 
1 Determine the order of the ARMA(p,q) process. 
2 Estimate the parameters: )(ˆ Lϕ , )(ˆ Lθ . 
3 Resample from tt xLLu )(ˆ)(ˆˆ 1 ϕθ −= (after re-centring the tû  around zero). 
4 Choose a large positive integer τ, set *

tx = 0 for t < -τ, and generate iid draws for *
tu , 

with t = -τ, …, T. 
5 Generate pseudo-data: *1* )(ˆ)(ˆ tt uLLx θϕ −=  for t = -τ, …, T and retain the last T values 

of *
tx . 
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6 Calculate the bootstrap parameter estimates: )(*ˆ Lϕ ,  )(*ˆ Lθ . 
7 Repeat steps 3-6 many times and built up the empirical distribution to obtain the 

functional relation or analyse the required statistics. 
 
The ARMA parameters can be estimated using different methods including maximum 

likelihood (ML) algorithms, as presented by Boaz (1994) and others. 
As Berkowitz & Kilian (2000) mentioned, the bootstrap can perform well when the 

parametric model provides a good approximation to the true model. In practice, for a sample of 
size T, the model and the order (p, q) are unknown. Different scenarios have to be considered 
and a selection procedure will be applied. The most used procedures are, according to (Alonso et 
al. 2004): the final prediction error, the Akaike information criterion, the Bayesian information 
criterion and the Akaike’s Information Corrected Criterion (AICC). For the investigation 
presented in this paper, the AICC method was used: 

2)(
)1(2)ˆ,ˆ,ˆ(ln2 2

−+−
++

+Λ−=
qpT
qpTbaAICC σ  ,(2) 

where 
â is the estimated AR parameters; b̂ is the estimated MA parameters; 2σ̂  is the 

variance of the white noise, and ),,( ⋅⋅⋅Λ is the likelihood of the data under the Gaussian ARMA 
model. 

The block bootstrap is the best-known method for implementing the bootstrap time series, as 
(Härdle et al. 2003) mentioned. The method “consists of dividing the data into blocks of 
observations and sampling the blocks randomly with replacement.” For the time series considered 
above, with non-overlapping blocks of length l, the first block is composed by observations {xj; j = 
1, 2, …, l}, the second block contains observations {xl+j; j = 1, 2, …, l}, and so forth. When using 
the overlapping (moving) blocks of length l, the first block is composed by observations {xj; j = 1, 
2, …, l}, the second block consists of observations {xj+1; j = 1, …, l}, and so forth. The method of 
resampling is based on the replacement approach. The block bootstrap with random block length is 
a stationary bootstrap because a stationary data series is obtained. 

Seasonal time series are a special class of time series, appearing in environmental risk 
management or the multi-version software testing. These time series are typically modelled by 
equation 

ttt ux += μ , and dtt −= μμ , t > d, (3) 
where d is the period (day, week, month etc.) of some deterministic (but unknown) function 

μt, and {ut, t>0} is a stationary process with mean zero. In general, if μt is not a constant, the 
seasonal model is not stationary, that is a “seasonal block bootstrap” method (denoted, in the 
following, by SBB) is necessary. In the following let us remember the Politis (2001) approach that 
proved a good behaviour for time series obtained when monitoring the pollution of cement plants.  

The SBB algorithm considers that there exists an integer n such as T = nd, b ( < n) a given 
positive integer, k = nb, and works along the following steps: 

1 Let i0, i1, …, ik-1 be drawn independent identically distributed uniform on the set {1, 2, 
…, n-b+1}; 

2 Build the bootstrap pseudo-series X1*, X2*, …, Xl*, where l = kbd, and 
1

* : −++ = jdijmbd m
XX  (4) 

 for m = 0, 1, …, k-1, and j = 1, 2, …, bd.  
The estimation of seasonal component μi, i = 1, 2, …, d, and the overall mean 

∑=
−=

d

i id
1

1 μμ are realised by means of averages of the “sampled” series:  
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∑
−

=
+

−=
1

0

1ˆ
n

j
jdii Xnμ , and ∑

=

−=
d

i
id

1

1ˆ μμ . (5) 

The usefulness of the SBB method consists of interval estimates obtaining for μi and μ by 
means of successfully approximating the distribution of iμ̂ and μ̂ by their bootstrap versions 
computed based on the bootstrap pseudo-series X1*, X2*, …, Xl*, by 

∑
−

=
+

−=
1

0

*1* )(
kb

j
jdii Xkbμ , and ∑

=

−=
d

i
id

1

*1* ˆˆ μμ . (6) 

This model is used in the place of “residual” block bootstrap obtainable by resampling of the 
residuals ttt XY μ̂:ˆ −= . The pseudo-series **

2
*

1
ˆ,,ˆ,ˆ
lYYY L is used to generate the bootstrap series 

** ˆˆ: ttt YX += μ , t = 1, 2, …, l. 
It was proved (see Politis, 2001) that overlapping plays an important role in bootstrap 

efficiency: “the maximum overlap leads to maximum efficiency”. A data based adapted procedure 
for choosing the block size l, in finite samples, based on the (Berkowitz & Kilian, 2000) method, in 
order to maximize the average accuracy. 

Given the stationary series {xt; t = 1, 2, …, T}, the bootstrap approach can be used to select 
the block size suitable for a maximum accuracy in estimating some statistic of interest, according to 
the following steps: 

1 Approximate the given time series by a parametric ARMA(p, q), or AR(p) model, with 
order selected by AICC approach. 

2 Generate B (≥ 512) Monte Carlo trials of length T from the model fitted above. 
3 For each Monte Carlo trial generate overlapping blocks bootstrap data {Xt*} for 

different block sizes k. 
4 Compute the statistics of interest {Xt*(k)}.  
5 Select the block size k* which, on average, produces the most accurate test statistics, 

point estimate, or confidence interval across Monte Carlo trials. 
6 Use the block size k* to apply the Block bootstrap or SBB method for the original data 

{xt; t = 1, 2, …, T}. 
 
There are available other methods for bootstrapping time series: (Berkowitz & Kilian 2000, 

Härdel et al. 2003) and Politis (2003) to mention only some references. The above selected 
approaches proved to be suitable (computing effort, accuracy) for the investigation on using time 
series for risk management in finance, environment and software reliability. 

 
2.3.  Risk management 

 
There are many definitions of the term “risk”, all of them including two important 

characteristics, namely uncertainty (an event may or not may occur) and loss (an event has 
undesired effects): risk being the possibility of suffering losses caused by an event that will 
probably occurs. 

Generally speaking, risk management is a systematic process for identifying, analysing and 
controlling risks.  

Multi-criteria decision aided, soft computing, and statistical analysis are some important 
approaches when speak about “Decide with minimum risk”. Recently, time-series risk models 
were proposed, mainly for insurance business (Wan et al. 2005, Zhang et al. 2007). Also, other 
researchers proved that time-series analysis and forecasting play an important role in risk 
management. These progresses can be accompanied by bootstrap methodology in order to apply 
a risk preventive approach. 
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3. CASE STUDIES 
 

3.1.  Bootstrapping time series applied for software risk management 
 
According to Kontio (1997), “software development is often plagued with unanticipated 

problems which cause projects to miss deadlines, exceed budgets, or deliver less than satisfactory 
products”. Even if these problems cannot be eliminated completely some of them can be well 
controlled well by taking appropriate preventive action.  

Practically, the software development organizations are exposed to a large plethora of 
risk factors. Some of them are: human resources quality, unrealistic schedule and budget, the 
mismatching of requirements and developed item, continuous alteration of requirements, 
outsourcing generated problems, overestimation of infrastructure capability etc. Software 
organizations may be able to avoid a large number of such problems if they use systematic risk 
management procedures and techniques early in projects. Any methodology has to monitor such 
resources and multivariate time series are obtained using a measurement methodology as 
provided by Fenton & Pfleeger (1996).  

One approach to analysis time series for software reliability is based on soft computing 
techniques as shown by Albeanu & Popentiu-Vladicescu (2005). However, during this 
investigation we found that classical time series analysis methods when combined with bootstrap 
resampling provide valuable information even if the size of the sample is not large, when used 
for Software Risk Management (SRM). 

When speak about software metrics for risk management, some metrics can be considered 
as critical, called SRM-critically, and will be analysed with time series methodologies. Other 
metrics will be analysed by graph methods, like in Risk. It methodology (Kontio & Basili 1996, 
Kontio 1997).  

The SRM-critically metrics are: a) the difference between actual expenses and the 
initially declared project cost; b) the difference between actual expenses and the predicted values 
obtained using the COCOMO approach; c) the ratio between real project progress and the 
planned project progress (explained by the Gantt chart, see Figure 1); Faults received per week 
(critically per month), and the successful debug actions per week. 

 

 
 

Figure 1. Waterfall model and the time series of critical bugs per month 
 
Other metrics like internal complexity, code readability, or the portability are not as critical 

metrics, if these are not stated by requirements agreement. 
For software project developed based on waterfall model having modular structures, but 

every module, except the first one, is dependent at least on previous model we experience a 
seasonal time series of critical bugs.  
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Applying the SBB approach we obtain the trend curve shown in Figure 2. This analyse 
was done before any moment of time indicated by Milestone (1 to 4, for the project under 
discussion).  

Seasonal Block Bootstrap time series
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Figure 2. Seasonal Block Bootstrap (the last three time series, and the trend curve obtained by 

ARMA model for the last generated series). 
 
Using this type of analysis important information was obtained not only for the staff 

involved in preventive risk management, but also for project manager, having opportunity to 
improve the structure of working teams (three main partners) and for rescheduling the financial 
resources before any milestone point.   

 
 

3.2. Bootstrapping time series for inflation forecasting 
 
Time series analysis started to be widely used in economics and finance since the 

discovering of the fact that “univariate ARIMA models often have far better forecasting and 
explanatory power than extremely complicated multivariate macroeconomic models” as Golub & 
Tilman (2000) mentioned. Also, these models proved a good behaviour in software reliability 
prediction (Popentiu-Vladicescu 2001). 

The Bootstrap proved to be an important approach for analysing interest rates in financial 
risk management, as shown by Dette & Weissbach (2006). 

In our study, the Consumer Price Index (CPI), which measures inflation, was studied by 
bootstrapping corresponding time series in order to forecast the rate of inflation. The standard 
bootstrap approach was used for the series rate of inflation (computed based on CPI) from 1992 to 
2007. The initial time series is shown in Figure 3. The last five bootstrap time series from a set of 
200 Monte Carlo trials and the trend curve modelled according to ARMA(0,2) is shown in Figure 4. 
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Figure 3. Inflation rate 1992-2007 (according to the Romanian Institute of Statistics: 
https://statistici.insse.ro/ipc/?lang=en) 
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Figure 4. The trend curves estimated by the initial time series and the bootstrap  
time series of inflation rate 

 

 
 

Figure 5. Pollution monitoring for increasing the health state in a cement plant region 
 
When considered the CPI databases containing records at month level, some seasonal 

behaviour was identified. At global level, a moving average model was more suited. 
The analyses checked the models parameters using the AICC formula given by (2). Other 

time series were used to investigate the bootstrap behaviour in order to provide confidence bands 
for dynamic financial analysis as in (Albeanu et al. 2007). 
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Other considerations on the accuracy of time series, interest rate and Survey forecast of 
inflation can be found on (Hafer & Hein 1984). 

 
 

3.3. Bootstrapping pollution time series  
 
Analysis of air pollution is important not only for meteorological point of view, but mainly 

for health (Gouveia & Fletcher 2000). This is the main reason that industrial pollution has to be 
monitored to keep the level of pollution in some limits according to the international regulations. 

Environmental regulations for cement plants are becoming tougher and tougher, and cement 
manufacturers have to constantly review their anti-pollution measures. As presented in (Madsen et 
al. 2004) the best way to fight against pollution is to use computer-aided decision software being 
able to capture not only measurements for analysis, but also intelligent behaviour to provide 
information about the optimal configuration of the cement plant modules in order to keep some 
level of production under pollution regulations’ constraints, which is similar to the Columbus 
approach of Solojentsev (2005).  

For the time series analysed, using classical methods (Figure 5), we use, now, the bootstrap 
methodology to obtain information about accuracy estimation (Figure 6).  

 

 
 

Figure 6. Bootstrapping time-series of air pollution by dust at 2400 m 
 
We found that using AICC method is better than use the final prediction error approach as 

used in the initial software implementation.   
 
 

4. CONCLUSIONS 
 
Starting from idea that time-series represents an important approach in the prediction of the 

behaviour of some processes considered under risk management, this paper shows that bootstrap 
methodology is useful enough, but the researcher/manager has to choose the appropriate type of 
resampling. 

 The paper emphasizes on the utility of bootstrap resampling for different fields of practice 
considering three particular applications: software risk management, financial risk management and 
environment risk management. 

 



G. Albeanu, H. Madsen, B. Burtschy, Fl. Popentiu‐Vladicescu, M. Ghica –  
BOOTSTRAPPING TIME SERIES WITH APPLICATION TO RISK MANAGEMENT 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 92 - 

ACKNOWLEDGEMENTS 
 
The present investigation has been developed mainly under the UNITWIN program of 

UNESCO. The authors acknowledge their institutions for support. 
 

REFERENCES 
 

[2] Albeanu, G., Madsen, H., Ghica, M, Thyregod, P. & Popentiu-Vladicescu, Fl. 2007. 
On using bootstrap methods for understanding empirical loss data and dynamic financial analysis. 
In Peter Goos (ed.), ENBIS 7 Conference, Dortmund (September 24-26, 2007), CDROM. 

[3] Albeanu, G. & Popentiu-Vladicescu, F. 2005. On Using the Fuzzy Nearest Neighbour 
Method for Time Series Forecasting in Software Reliability, Proceedings of SIG 2005, pp. 206-209, 
SIER Publishing House. 

[4] Alonso, A.M., Peña D. & Romo J. 2004. Introducing model uncertainty in time series 
bootstrap. Statistica Sinica 14: 155-174.  

[5] Aven, T. 2003. Foundations of Risk Analysis – A Knowledge and Decision Oriented 
Perspective, New York: Wiley. 

[6] Berkowitz, J. & Kilian, L. 2000. Recent developments in bootstrapping time series, 
Econometric Reviews 19(1): 1-48. 

[7] Boaz, P. 1994. Digital processing of random signals: theory and methods, Englewood 
Cliffs: Prentice Hall, Inc.  

[8] Burtschy, B., Boros, D.N., Popentiu, F., Albeanu, G. & Nicola, V. 1997. Improving 
Software Reliability Forecasting. Microelectronics and Reliability, 37(6): 901-907. 

[9] Bühlmann, P.  2002. Bootstraps for time series. Statistical Science 17:52-72. 
[10] Cochrane J.H. 2005. Time series for macroeconomics and finance, University of 

Chicago: http://faculty.chicagogsb.edu/john.cochrane/research/Papers/time_series_book.pdf 
(available: February 2008). 

[11] Dette, H. & Weissbach, R. 2006. A bootstrap test for the comparison of nonlinear time 
series – with application to interest rate odelling, Technical Report 30, University of Dortmund: 
http://www.ruhr-uni-
bochum.de/imperia/md/content/mathematik3/publications/nonpara0206rafael6.pdf (available: 
February 2008) 

[12] Efron, B. 1979. Bootstrap methods: another look at the jackknife, Annals of statistics 
9: 1218-1228. 

[13] Efron, B. & Tibshirani R. 1986. Bootstrap methods for standard errors. Confidence 
intervals, and other measures of statistical accuracy, Statistical science 1: 54-77. 

[14] Efron, B. & Tibshirani, R. 1993. An introduction to the bootstrap, New York: 
Chapman and Hall. 

[15] Entrop, O., Memmel, Ch., Wilkens, M. & Zeisler, A. 2007. Analyzing the interest rate 
risk of banks using time series of accounting-based data: evidence from Germany, SSRN: 
http://ssrn.com/abstract=982070 (available: February 2008.) 

[16] Fenton, N.E. & Pfleeger S.L. 1996. Software metrics: a rigorous and practical 
approach, London: PWS Publishing Company. 

[17] Golub, B.W. & Tilman, L.M. (2000), Risk Management: Approaches for Fixed 
Income Markets, New York: Wiley. 

[18] Gouveia, N, Fletcher, T. (2000), Time series analysis of air pollution and mortality: 
effects by cause, age and socio-economic status, J Epidemiol Community Health 54:750-755. 

[19] .Hafer, R.W. & Hein S.E. 1984. On the Accuracy of Time Series, Interest Rate and 
Survey Forecasts of Inflation. Working Paper 1984-022A, http://research.stlouisfed.org/wp/ 
1984/1984-022.pdf (available: February 2008) 



G. Albeanu, H. Madsen, B. Burtschy, Fl. Popentiu‐Vladicescu, M. Ghica –  
BOOTSTRAPPING TIME SERIES WITH APPLICATION TO RISK MANAGEMENT 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 93 - 

[20] Hamilton, J.D. 1994. Time Series analysis, Princeton: Princeton University Press. 
[21] Härdle, W., Horowitz, J.L. & Kreiss, J.-P. 2003. Bootstrap methods for time series. 

International Statist. Review, 71: 435-459. 
[22] Higuera, R.P. & Haimes Y.Y. 1996. Software risk management, Technical Report 

CMU/SEI-96-TR-012: http://www.sei. Cmu.edu/pub/docments/96.reports/pdf/tr012.96.pdf 
(available: February 2008.) 

[23] Kontio, J. 1997. The Riskit Method for Software Risk Management, version 1.00, 
UMIACS-TR-97-38: http://www. Sbl.tkk.fi/jkontio/riskittr.pdf (available: February 2008). 

[24] Kontio, J. & Basili V.R. 1996, Risk Knowledge Capture in the Riskit Method. 1996. 
Proceedings of the 21st Software Engineering Workshop. NASA. Greenbelt, Maryland. 

[25] Madsen, H. 2007. Time series analysis, Chapman & Hall/CRC. 
[26] Madsen, H., Thyregod, P., Popentiu-Vladicescu, F., Albeanu, G. & Serbanescu, L. 

2004. A Decision Support System for Pollution Control in Cement Plants. In C. Spitzer, U. 
Schmocker and V. N. Dang (eds.), Proceedings of PSAM 07 – ESREL’04, June 14-18, 2004, 
Probabilistic Safety Assessment and Management 3:1784-1789, Berlin: Springer Verlag. 

[27] Politis, D. N. 2001. Resampling time series with seasonal components. In Wegman 
E.J., Braverman A., Goodman A. & Smyth P. (eds.), Frontiers in Data Mining and Bioinformatics;  
Proc. 33rd Symp. Interface, California, June 13-17, pp. 619-621, Fairfax Station: Interface 
foundation of North America. 

[28] Politis, D. N. 2003. The impact of bootstrap methods on time series analysis. 
Statistical Science 18(2): 219-230. 

[29] Popentiu-Vladicescu, Fl., Burtschy, B. & Albeanu, G. 2001. Time series methods for 
odelling software quality. In E. Zio, M. Demichela, N. Piccinin (eds.), Proceedings of the 

European Conference on Safety and Reliability, pp. 9 – 15. 
[30] Solojentsev, E.D. 2005. Scenario logic and probabilistic management of risk in 

business and engineering, Boston: Springer. 
[31] Todinov, M.T. 2006. An aggregated risk measure based on the cumulative distribution 

of the potential loss. In Guedes Soares & Zio E. (eds.), Safety and Reliability for Managing Risk, 
Proceedings of the ESREL 2006: 1233-1240, London: Taylor & Francis Group. 

[32] Wan, L.M., Yuen, K.C &Li, W.K. 2005. Ultimate ruin probability for a time-series 
risk model with dependent classes of insurance business, Journal of Actuarial Practice 12:193-214. 

[33] Zhang, Z., Yuen, K.C., Li, W.K. 2007. A time-series risk model with constant interest 
for dependent classes of business, Insurance: Mathematics and Economics 41(1): 32-40. 
 

 




